Daily Remote Monitoring of Implantable Cardioverter-Defibrillators:

Insights from the Pooled Patient-Level Data from Three Randomized Controlled Trials (IN-TIME, ECOST, TRUST)¹

Study Design

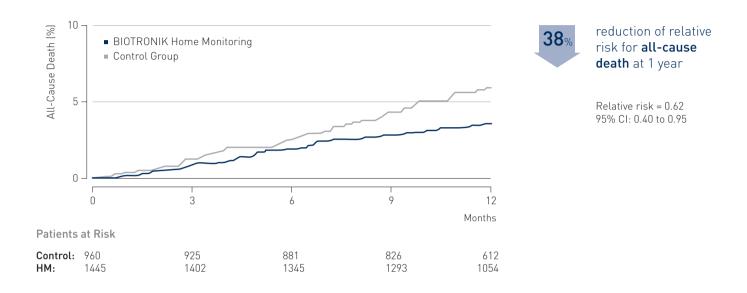
- Meta-analysis of three randomized controlled trials utilizing a remote monitoring system with daily transmission verification (BIOTRONIK Home Monitoring®)
- To verify the mortality findings of Parthiban et al.² and to explore mechanism of clinical benefit
- 2405 patients at 181 centers mainly in the USA, France and Germany

Key Result

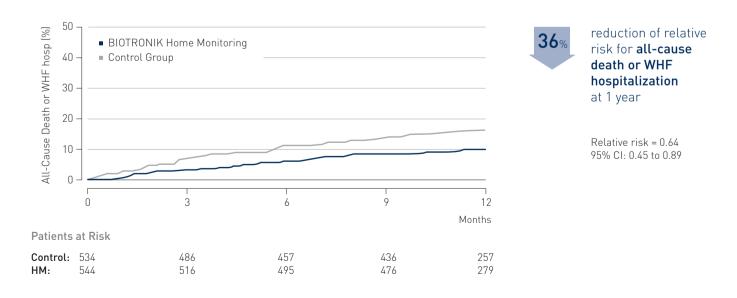
 Home Monitoring with daily transmission verification significantly reduced all-cause death and the composite endpoint of all-cause death or worsening heart failure (WHF) hospitalization.

Clinical Endpoint (at 12 Months)	Relative Risk Reduction	Absolute Risk Reduction	
All-cause death	38%	1.9%	p < 0.05
All-cause death or WHF hospitalization	36% 👢	5.6%	p < 0.01

• Similar magnitudes of absolute risk reductions for WHF and cardiovascular endpoints suggest that the benefit of Home Monitoring is driven by the prevention of heart failure exacerbation.

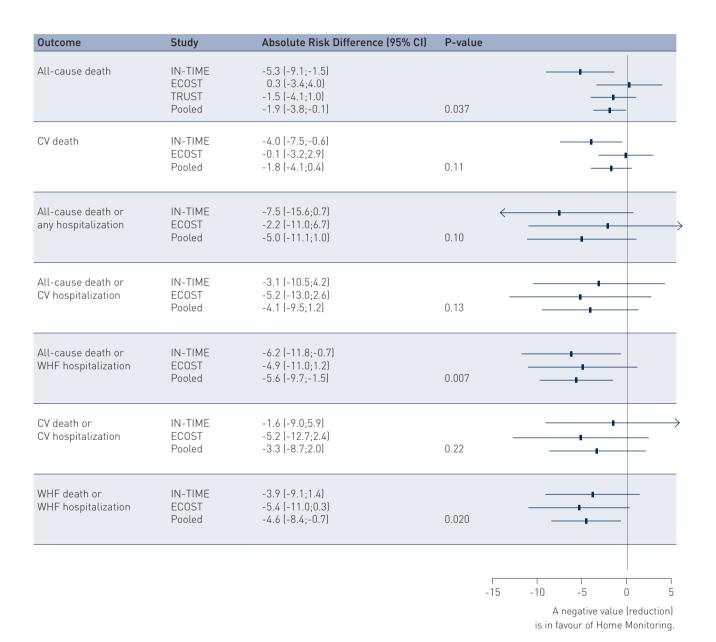

Clinical Relevance

- This analysis confirms the significant mortality benefit with BIOTRONIK Home Monitoring to be valid for all kind of ICD patients, independent from NYHA class, device type or any other baseline variable
- The comparison of combined, cause-specific endpoints strongly indicates "prevention of heart failure exacerbation" as the specific mechanism for the observed clinical benefits.



BIOTRONIK Home Monitoring Is Associated with a Significant Reduction of Clinically Relevant Endpoints

Time to All-Cause Death for Pooled TRUST, ECOST, and IN-TIME Patients



Time to All-Cause Death or WHF Hospitalization for Pooled ECOST and IN-TIME Patients

The Clinical Benefits Are Driven by Prevention of Heart Failure Exacerbation

Absolute Risk Differences (in %) for All Endpoints at 12 Months

Meta-Analysis of Three Randomized Controlled Trials Utilizing a Remote Monitoring System with Daily Transmission Verification

Pooled Individual Patient Data from IN-TIME, ECOST and TRUST

	(a) IN-TIME	(b) ECOST	(c) TRUST
N° of centers	26 sites in Germany, 10 sites elsewhere³	43 sites in France	102 sites in USA
Patient eligibility	Indication for ICD or CRT-D, heart failure (>3 months), NYHA class II or III, LVEF <35%	Indication for ICD, not NYHA class IV	Class 1 indication for ICD, not pacemaker dependent
Primary objective	To compare heart failure outcomes using a clinical composite (Packer) score ⁴	To compare major CVAEs including all-cause death	To evaluate safety and efficacy of extended IO intervals
Follow-up schedule			
HM group	IO at 12 M, and in-between according to hospital routine	IO at 1-3 M, 15 M, and 27 M. HM replaced IO at 9 M and 21 M	IO at 3 M and 15 M. HM replaced IO at 6 M, 9 M and 12 M
Control group	Same as in the HM group	IO at 1-3 M, then every 6 M	IO every 3 M
Blinded endpoint committee	Yes	Yes	No

Pooled Patient-Level Data

Analyzed Clinical Endpoints (All at 12 Month)

Death n=2405 (a+b+c)	■ All-cause death
Adjudicated death and hospitalization n=1078 (a+b)	 CV death All-cause death or any hospitalization All-cause death or CV hospitalization All-cause death or worsening heart failure (WHF) hospitalization CV death or CV hospitalization WHF death or WHF hospitalization

- 1 Hindricks G, Varma N, Kacet S, Lewalter T, Søgaard P, Guédon-Moreau L, Proff J, Gerds T, Anker S, Torp-Pedersen C; Daily remote monitoring of implantable cardioverter defibrillators: pooled individual patient data from IN-TIME, ECOST, and TRUST trials suggest a mechanism of clinical benefit; ESC 2016
- 2 Parthiban N, Esterman A, Mahajan R, Twomey DJ, Pathak RK, Lau DH, Roberts-Thomson KC, Young GD, Sanders P, Ganesan AN; Remote Monitoring of Implantable Cardioverter-Defibrillators: A Systematic Review and Meta-Analysis of Clinical Outcomes; J Am Coll Cardiol. 2015 Jun 23;65(24):2591-600.
- 3 Denmark (3 sites), Czech Republic (2), Israel (2), Australia (1), Austria (1), and Latvia (1).
- 4 The score combines all-cause death, overnight hospitalization for heart failure, change in NYHA class, and change in patient global self-assessment.

Abbreviations: CI, confidence interval; CRT-D, cardiac resynchronization therapy defibrillator; CV, cardiovascular; CVAE, cardiovascular adverse event; ECOST, Effectiveness and cost of ICDs follow-up schedule with telecardiology; HM, Home Monitoring; hosp, hospitalization; ICD, implantable cardioverter-defibrillator; IN-TIME, Influence of Home Monitoring on mortality and morbidity in heart failure patients with impaired left ventricular function; IO, in-office; LVEF, left ventricular ejection fraction; M, months; NYHA, New York Heart Association; TRUST, Lumos-T safely reduces routine office device follow-up; WHF, worsening heart failure

